SWE 637 Software Testing Chapter 8.2

Logic Coverage In-class exercise

Dr. Brittany Johnson-Matthews (Dr. B for short)

https://go.gmu.edu/SWE637

Adapted from slides by Jeff Offutt and Bob Kurtz

Given predicate $f = ab\overline{c} + \overline{a}b\overline{c}$

Draw the K-map for $m{f}$ and $m{ar{f}}$

Find the non-redundant prime implicant representation for $m{f}$ and $m{ar{f}}$

Give a test set to satisfy the following criteria for the simplified \boldsymbol{f} calculated above

Implicant Coverage (IC)

MUTP Coverage

CUTPNFP Coverage

MNFP Coverage


MUMCUT Coverage

Given predicate $f = ab\overline{c} + \overline{a}b\overline{c}$

Draw the K-map for **f**

Given predicate $f = ab\overline{c} + \overline{a}b\overline{c}$

Draw the K-map for **f**

Given predicate $f = ab\overline{c} + \overline{a}b\overline{c}$

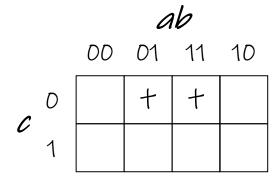
Draw the K-map for $\overline{m{f}}$

Given predicate $f = ab\overline{c} + \overline{a}b\overline{c}$

Draw the K-map for $\overline{\boldsymbol{f}}$

		ab			
		DD	01	11	10
	D	+			+
C	1	+	+	+	+

Given predicate $f = ab\overline{c} + \overline{a}b\overline{c}$


Find the non-redundant prime implicant representation for \boldsymbol{f}

Given predicate $f = ab\overline{c} + \overline{a}b\overline{c}$

Find the non-redundant prime implicant representation for \boldsymbol{f}

$$f = b\overline{c}$$

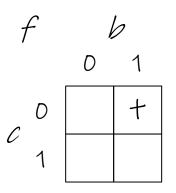
...and for $\overline{m{f}}$

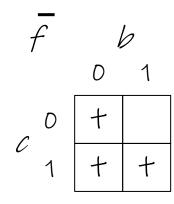
		ab			
		DD	01	11	10
C	D	+			+
	1	+	+	+	+

Given predicate $f = ab\overline{c} + \overline{a}b\overline{c}$

Find the non-redundant prime implicant representation for \boldsymbol{f}

$$f = b\overline{c}$$

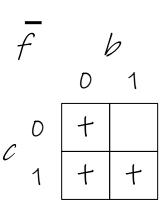

...and for
$$\overline{f}$$
 $\overline{f} = \overline{b} + c$


		ab			
		DD	01	11	10
_	D	+			+
C	1	+	+	+	+

ab

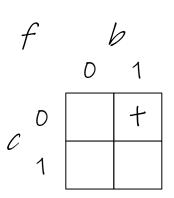
Given predicates $f = b\bar{c}$ and $\bar{f} = \bar{b} + c$, give a test set to satisfy Implicant Coverage (IC)

For each implicant in ${\bf f}$ and $\overline{{\bf f}}$, ${\bf TR}$ contains the requirement that the implicant evaluate to true

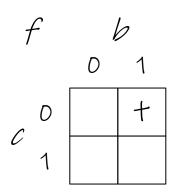


Given predicates $f = b\bar{c}$ and $\bar{f} = \bar{b} + c$, give a test set to satisfy Implicant Coverage (IC)

For each implicant in ${\it f}$ and ${\it \bar f}$, ${\it TR}$ contains the requirement that the implicant evaluate to ${\it true}$

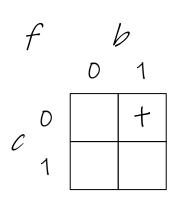

```
\begin{array}{c|c}
f & b \\
0 & 1 \\
c & + \\
1 & - \\
\end{array}
```

```
For b!c: TF
For !b: F*
For c: *T
TR = {TF, FT}
```

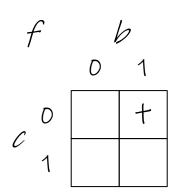


Given the predicate ${m f}={m b}{m ar c}$, give a test set to satisfy MUTP Coverage

For each implicant in *f*, *TR* contains UTPs such that clauses not in *i* take on *true* and *false*

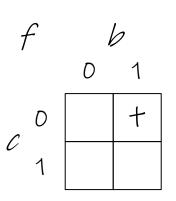
Given the predicate ${m f}={m b}{m \overline{c}}$, give a test set to satisfy MUTP Coverage


For each implicant in *f*, *TR* contains UTPs such that clauses not in *i* take on *true* and *false*

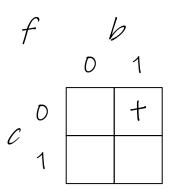
$$TR = \{TF\}$$


Using the simplified prime representation of ${\it f}$, give a test set to satisfy CUTPNFP Coverage

For each literal **c** in each implicant **i**, **TR** contains a UTP for **i** and a NFP for **c** in **i** such that the two points differ only by the value of **c**


Using the simplified prime representation of ${\it f}$, give a test set to satisfy CUTPNFP Coverage

For each literal **c** in each implicant **i**, **TR** contains a UTP for **i** and a NFP for **c** in **i** such that the two points differ only by the value of **c**


Given the predicate $f=b\overline{c}$, give a test set to satisfy MNFP Coverage

For each literal **c** in each implicant **i**, **TR** contains NFPs such that clauses not in **i** take on true and false

Given the predicate $f=b\overline{c}$, give a test set to satisfy MNFP Coverage

For each literal **c** in each implicant **i**, **TR** contains NFPs such that clauses not in **i** take on true and false

$$TR = \{FF, TT\}$$

Given the predicate $f = b\bar{c}$, give a test set to satisfy MUMCUT Coverage Given a minimal DNF representation of a predicate f, apply MUTP, CUTPNFP, and MNFP

END OF EXERCISE

Given predicate $f = \overline{abcd} + abcd$

Draw the K-map for $m{f}$ and $m{ar{f}}$

Find the non-redundant prime implicant representation for $m{f}$ and $m{ar{f}}$

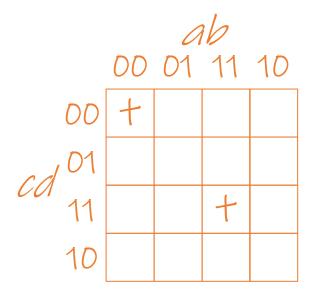
Give a test set to satisfy the following criteria for the simplified $m{f}$ calculated above

Implicant Coverage (IC)

MUTP Coverage

CUTPNFP Coverage

MNFP Coverage

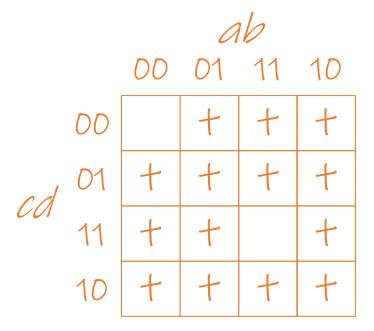

MUMCUT Coverage

Given predicate $f = \overline{abcd} + abcd$

Draw the K-map for **f**

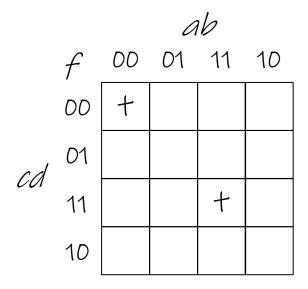
Given predicate $f = \overline{abcd} + abcd$

Draw the K-map for **f**



Given predicate $f = \overline{abcd} + abcd$

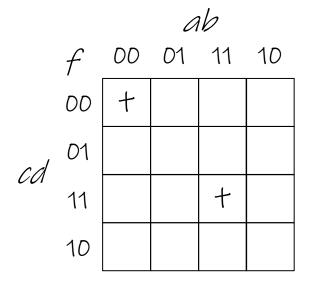
Draw the K-map for $\overline{\boldsymbol{f}}$


Given predicate $f = \overline{abcd} + abcd$

Draw the K-map for $\overline{\boldsymbol{f}}$

Given predicate $f = \overline{abcd} + abcd$

Find the non-redundant prime implicant representation for ${m f}$



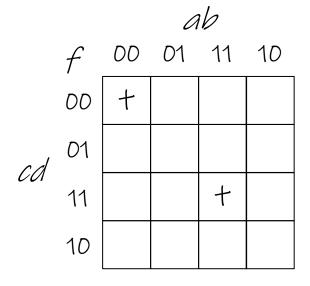
Given predicate $f = \overline{abcd} + abcd$

Find the non-redundant prime implicant representation for ${m f}$

$$f = \overline{abcd} + abcd$$

...and for $\overline{m{f}}$

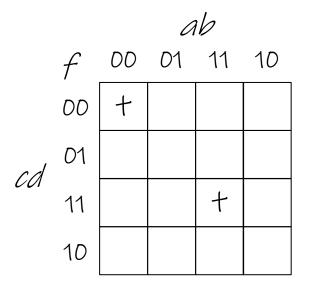
	_	ab			
	f	DD	01	11	10
	DD		+	+	+
cd	<i>D</i> 1	+	+	+	+
VOI	11	+	+		+
	10	+	+	+	+


Given predicate $f = \overline{abcd} + abcd$

Find the non-redundant prime implicant representation for \boldsymbol{f}

$$f = \overline{abcd} + abcd$$

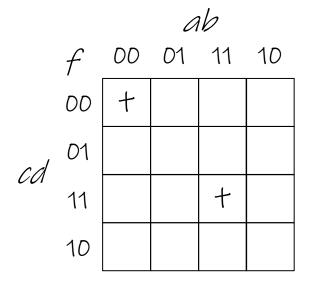
...and for
$$\overline{f}$$


$$\overline{f} = a\overline{b} + c\overline{d} + \overline{a}d + b\overline{c}$$

	_	ab			
	f	DD	01	11	10
cd	DD		+	+	+
	D1	+	+	+	+
	11	+	+		+
	10	+	+	+	+

Given predicates $f=\overline{abcd}+abcd$ and $\overline{f}=a\overline{b}+c\overline{d}+\overline{ad}+b\overline{c}$, give a test set to satisfy Implicant Coverage (IC)

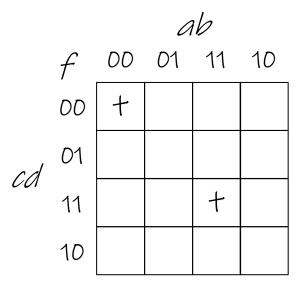
For each implicant in ${\bf f}$ and ${\bf \bar f}$, ${\bf TR}$ contains the requirement that the implicant evaluate to true



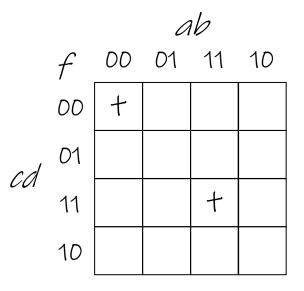
	_	ab			
	f	DD	01	11	10
	DD		+	+	+
cd	D1	+	+	+	+
CO	11	+	+		+
	10	+	+	+	+

Given predicates $f=\overline{abcd}+abcd$ and $\overline{f}=a\overline{b}+c\overline{d}+\overline{ad}+b\overline{c}$, give a test set to satisfy Implicant Coverage (IC)

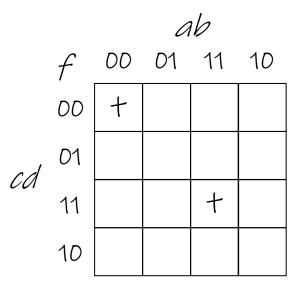
For each implicant in f and \overline{f} , TR contains the requirement that the implicant evaluate to true


TR = { FFFF, TTTT, TFTF, FTFT }

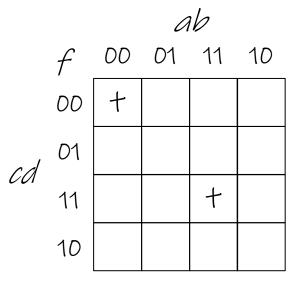
	_	ab			
	f	DD	01	11	10
cd	DD		+	+	+
	01	+	+	+	+
	11	+	+		+
	10	+	+	+	+


Given predicate $f = \overline{abcd} + abcd$, give a test set to satisfy MUTP Coverage

For each implicant in *f*, *TR* contains UTPs such that clauses not in *i* take on *true* and *false*


Given predicate $f = \overline{abcd} + abcd$, give a test set to satisfy MUTP Coverage

For each implicant in **f**, **TR** contains UTPs such that clauses not in **i** take on *true* and *false*

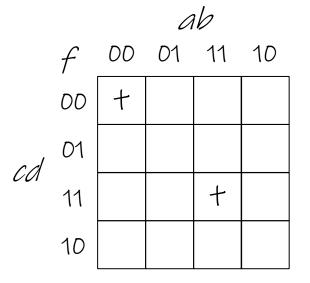

Given predicate $f = \overline{abcd} + abcd$,, give a test set to satisfy CUTPNFP Coverage

• For each literal \boldsymbol{c} in each implicant \boldsymbol{i} , \boldsymbol{TR} contains a UTP for \boldsymbol{i} and a NFP for \boldsymbol{c} in \boldsymbol{i} such that the two points differ only by the value of \boldsymbol{c}

Given predicate $f = \overline{abcd} + abcd$, give a test set to satisfy CUTPNFP Coverage


• For each literal **c** in each implicant **i**, **TR** contains a UTP for **i** and a NFP for **c** in **i** such that the two points differ only by the value of **c**


```
TR = { FFFF, TFFF, FTFF, FFTF, FFFT, TTTT, TTTT, TTTF}
```


Given predicate $f = \overline{abcd} + abcd$, give a test set to satisfy MNFP Coverage

For each literal **c** in each implicant **i**, **TR** contains NFPs such that clauses not in **i** take on true and false

Given predicate $f = \overline{abcd} + abcd$, give a test set to satisfy MNFP Coverage

For each literal **c** in each implicant **i**, **TR** contains NFPs such that clauses not in **i** take on true and false

Given predicate $f = \overline{abcd} + abcd$, give a test set that is guaranteed to detect all faults

MUMCUT - given a minimal DNF representation of a predicate \boldsymbol{f} , apply MUTP, CUTPNFP, and MNFP

Given predicate $f = \overline{abcd} + abcd$, give a test set that is guaranteed to detect all faults

MUMCUT - given a minimal DNF representation of a predicate \boldsymbol{f} , apply MUTP, CUTPNFP, and MNFP

END OF EXERCISE

Given predicate $f = ab + a\overline{b}c + \overline{ab}c$

Draw the K-map for $m{f}$ and $m{ar{f}}$

Find the non-redundant prime implicant representation for $m{f}$ and $m{ar{f}}$

Give a test set to satisfy the following criteria for the simplified \boldsymbol{f} calculated above

Implicant Coverage (IC)

MUTP Coverage

CUTPNFP Coverage

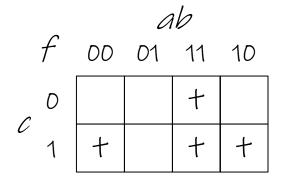
MNFP Coverage

MUMCUT Coverage

Given predicate $f = ab + a\overline{b}c + \overline{ab}c$

Draw the K-map for **f**

Given predicate
$$f = ab + a\overline{b}c + \overline{ab}c$$

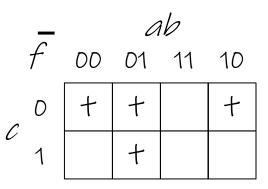

Draw the K-map for **f**

		av				
		00	01	11	10	
C	D			+		
	1	+		+	+	

...and for $\overline{\boldsymbol{f}}$

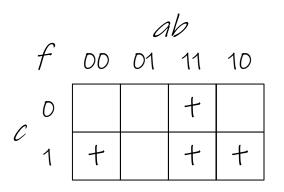
Given predicate
$$f = ab + a\overline{b}c + \overline{ab}c$$

Find the non-redundant prime implicant representation for ${m f}$


Given predicate
$$f = ab + a\overline{b}c + \overline{ab}c$$

Find the non-redundant prime implicant representation for $m{f}$

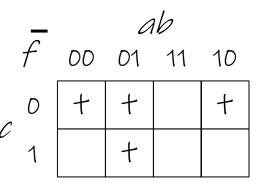
$$f = ab + \overline{b}c$$


...and for
$$\overline{f}$$
 $\overline{f} = \overline{a}b + \overline{b}c$

		ab					
	f	DD	01	11	10		
<u></u>	D			+			
C	1	+		+	+		

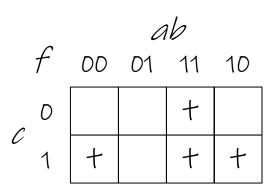
Given predicates $f=ab+\overline{b}c$ and $\overline{f}=\overline{a}b+\overline{b}c$, give a test set to satisfy Implicant Coverage (IC)

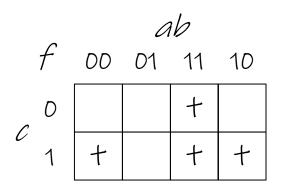

For each implicant in f and \overline{f} , TR contains the requirement that the implicant evaluate to true



	_	- ab				
	f	DD	01	11	10	
C	D	+	+		+	
	1		+			

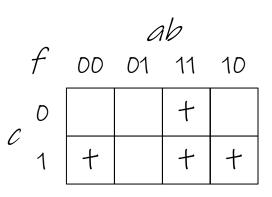
Given predicates $f=ab+\overline{b}c$ and $\overline{f}=\overline{a}b+\overline{b}c$, give a test set to satisfy Implicant Coverage (IC)


For each implicant in f and \overline{f} , TR contains the requirement that the implicant evaluate to true

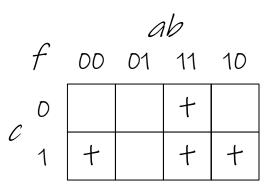

Given $m{f} = m{a} m{b} + m{\overline{b}} m{c}$, give a test set to satisfy MUTP Coverage

For each implicant in **f**, **TR** contains UTPs such that clauses not in **i** take on *true* and *false*

Given $m{f} = m{a} m{b} + m{\overline{b}} m{c}$, give a test set to satisfy MUTP Coverage

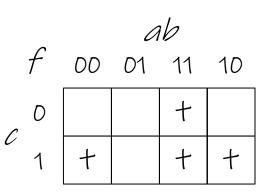

For each implicant in **f**, **TR** contains UTPs such that clauses not in **i** take on *true* and *false*


```
TR = { TTT, TTF, TFT, FFT}
```

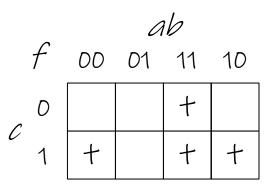

Given the predicate $f = ab + \overline{b}c$, give a test set to satisfy CUTPNFP Coverage

For each literal **c** in each implicant **i**, **TR** contains a UTP for **i** and a NFP for **c** in **i** such that the two points differ only by the value of **c**

Given the predicate $f = ab + \overline{b}c$, give a test set to satisfy CUTPNFP Coverage


For each literal **c** in each implicant **i**, **TR** contains a UTP for **i** and a NFP for **c** in **i** such that the two points differ only by the value of **c**

TR = { TTF, FTF, TFF, FFT, FTT, FFF}


Given the predicate $f = ab + \overline{b}c$, give a test set to satisfy MNFP Coverage

For each literal **c** in each implicant **i**, **TR** contains NFPs such that clauses not in **i** take on true and false

Given the predicate $f = ab + \overline{b}c$, give a test set to satisfy MNFP Coverage

For each literal **c** in each implicant **i**, **TR** contains NFPs such that clauses not in **i** take on true and false

TR = { FTF, FTT, TFF, FFF}
But is infeasible for c

Given the predicate $f = ab + \overline{b}c$, give a test set that is guaranteed to detect all faults

MUMCUT -given a minimal DNF representation of a predicate \boldsymbol{f} , apply MUTP, CUTPNFP, and MNFP

Given the predicate $f = ab + \overline{b}c$, give a test set that is guaranteed to detect all faults

MUMCUT -given a minimal DNF representation of a predicate \boldsymbol{f} , apply MUTP, CUTPNFP, and MNFP

TR = { TTT, TTF, TFT, FFT, FTF, TFF, FTT, FFF}
or {TTT, TTF, TFT, FFT, TFF, FTT} using minimal-MUMCUT

END OF EXERCISE