Logic Coverage
In-class exercise

Dr. Brittany Johnson-Matthews
(Dr. B for short)

https://go.gmu.edu/SWE637
Adapted from slides by Jeff Offutt and Bob Kurtz
Exercise 8.2 #1, Predicate i

Given predicate $f = ab\bar{c} + \bar{a}b\bar{c}$

Draw the K-map for f and \bar{f}

Find the non-redundant prime implicant representation for f and \bar{f}

Give a test set to satisfy the following criteria for the simplified f calculated above

Implicant Coverage (IC)
MUTP Coverage
CUTPNFP Coverage
MNFP Coverage
MUMCUT Coverage
Exercise 8.2 #1, Predicate i

Given predicate $f = ab\overline{c} + \overline{a}b\overline{c}$

Draw the K-map for f
Exercise 8.2 #1, Predicate i

Given predicate \(f = ab\overline{c} + \overline{a}b\overline{c} \)

Draw the K-map for \(f \)

\[
\begin{array}{cccc}
ab & 00 & 01 & 11 & 10 \\
0 & + & + & & \\
1 & & & & \\
\end{array}
\]
Exercise 8.2 #1, Predicate i

Given predicate $f = ab\overline{c} + \overline{a}b\overline{c}$

Draw the K-map for \overline{f}
Exercise 8.2 #1, Predicate i

Given predicate $f = ab\bar{c} + \bar{a}b\bar{c}$

Draw the K-map for \overline{f}
Exercise 8.2 #1, Predicate i

Given predicate \(f = ab\overline{c} + \overline{a}b\overline{c} \)

Find the non-redundant prime implicant representation for \(f \)
Exercise 8.2 #1, Predicate i

Given predicate $f = abc + \overline{a}bc$

Find the non-redundant prime implicant representation for f

$f = b\overline{c}$

...and for \overline{f}
Exercise 8.2 #1, Predicate i

Given predicate $f = ab\overline{c} + \overline{a}b\overline{c}$

Find the non-redundant prime implicant representation for f

$f = b\overline{c}$

…and for \overline{f}

$\overline{f} = \overline{b} + c$
Exercise 8.2 #1, Predicate \(i \)

Given predicates \(f = b\overline{c} \) and \(\overline{f} = \overline{b} + c \), give a test set to satisfy Implicant Coverage (IC)

For each implicant in \(f \) and \(\overline{f} \), TR contains the requirement that the implicant evaluate to \textit{true}
Exercise 8.2 #1, Predicate i

Given predicates $f = \overline{b} \overline{c}$ and $\overline{f} = \overline{b} + c$, give a test set to satisfy Implicant Coverage (IC).

For each implicant in f and \overline{f}, TR contains the requirement that the implicant evaluate to true.

For $b \land c$: TF
For \overline{b}: F^*
For c: *T

$TR = \{ TF, FT \}$
Exercise 8.2 #1, Predicate i

Given the predicate $f = b\overline{c}$, give a test set to satisfy MUTP Coverage.

For each implicant in f, TR contains UTPs such that clauses not in i take on true and false.
Exercise 8.2 #1, Predicate i

Given the predicate $f = b\bar{c}$, give a test set to satisfy MUTP Coverage

For each implicant in f, TR contains UTPs such that clauses not in i take on true and false

$TR = \{ TF \}$
Exercise 8.2 #1, Predicate \(i \)

Using the simplified prime representation of \(f \), give a test set to satisfy CUTFNPF Coverage.

For each literal \(c \) in each implicant \(i \), \(TR \) contains a UTP for \(i \) and a NFP for \(c \) in \(i \) such that the two points differ only by the value of \(c \)
Exercise 8.2 #1, Predicate i

Using the simplified prime representation of f, give a test set to satisfy CUTPNFP Coverage.

For each literal c in each implicant i, TR contains a UTP for i and a NFP for c in i such that the two points differ only by the value of c.

$TR = \{ TF, FF, TT \}$
Exercise 8.2 #1, Predicate i

Given the predicate $f = b\bar{c}$, give a test set to satisfy MNFP Coverage

For each literal c in each implicant i, TR contains NFPs such that clauses not in i take on true and false
Exercise 8.2 #1, Predicate i

Given the predicate $f = b\overline{c}$, give a test set to satisfy MNFP Coverage.

For each literal c in each implicant i, TR contains NFPs such that clauses not in i take on true and false.

$$TR = \{ FF, TT \}$$
Exercise 8.2 #1, Predicate i

Given the predicate $f = b\bar{c}$, give a test set to satisfy $MUMCUT$ Coverage.

Given a minimal DNF representation of a predicate f, apply MUTP, CUTPNFP, and MNFP.

$TR = \{ TF, FF, TT \}$
END OF EXERCISE
Exercise 8.2 #1, Predicate ii

Given predicate \(f = \overline{abcd} + abcd \)

Draw the K-map for \(f \) and \(\overline{f} \)

Find the non-redundant prime implicant representation for \(f \) and \(\overline{f} \)

Give a test set to satisfy the following criteria for the simplified \(f \) calculated above

- Implicant Coverage (IC)
- MUTP Coverage
- CUTPNFP Coverage
- MNFP Coverage
- MUMCUT Coverage
Exercise 8.2 #1, Predicate ii

Given predicate \(f = \overline{abcd} + abcd \)

Draw the K-map for \(f \)
Exercise 8.2 #1, Predicate ii

Given predicate \(f = \overline{abcd} + abcd \)

Draw the K-map for \(f \)
Exercise 8.2 #1, Predicate ii

Given predicate $f = \overline{abcd} + abcd$

Draw the K-map for \overline{f}
Exercise 8.2 #1, Predicate ii

Given predicate $f = \overline{abcd} + abcd$

Draw the K-map for \overline{f}
Exercise 8.2 #1, Predicate ii

Given predicate \(f = \overline{abcd} + abcd \)

Find the non-redundant prime implicant representation for \(f \)
Exercise 8.2 #1, Predicate ii

Given predicate \(f = \overline{abcd} + abcd \)

Find the non-redundant prime implicant representation for \(f \)
\(f = \overline{abcd} + abcd \)

…and for \(\overline{f} \)
Exercise 8.2 #1, Predicate ii

Given predicate \(f = \overline{abcd} + abcd \)

Find the non-redundant prime implicant representation for \(f \)

\(f = \overline{abcd} + abcd \)

…and for \(\bar{f} \)

\(\bar{f} = ab + cd + \overline{ad} + b\overline{c} \)
Exercise 8.2 #1, Predicate ii

Given predicates \(f = \overline{abcd} + abcd \) and \(\bar{f} = a\overline{b} + \overline{cd} + \overline{ad} + b\overline{c} \), give a test set to satisfy Implicant Coverage (IC)

For each implicant in \(f \) and \(\bar{f} \), TR contains the requirement that the implicant evaluate to true.
Exercise 8.2 #1, Predicate ii

Given predicates \(f = \overline{abcd} + abcd \) and \(\bar{f} = ab + \overline{cd} + \overline{ad} + b\overline{c} \), give a test set to satisfy Implicant Coverage (IC).

For each implicant in \(f \) and \(\bar{f} \), TR contains the requirement that the implicant evaluate to true.

\[
\text{TR} = \{ \text{FFFF, TTTT, TFTF, FTFT} \}
\]
Exercise 8.2 #1, Predicate ii

Given predicate $f = \overline{abcd} + abcd$, give a test set to satisfy MUTP Coverage.

For each implicant in f, TR contains UTPs such that clauses not in i take on true and false.
Exercise 8.2 #1, Predicate ii

Given predicate $f = \overline{abcd} + abcd$, give a test set to satisfy MUTP Coverage.

For each implicant in f, TR contains UTPs such that clauses not in i take on true and false.

$$TR = \{ FFFF, TTTT \}$$
Exercise 8.2 #1, Predicate ii

Given predicate \(f = \overline{abcd} + abcd \), give a test set to satisfy CUTPNFP Coverage

- For each literal \(c \) in each implicant \(i \), \(TR \) contains a UTP for \(i \) and a NFP for \(c \) in \(i \) such that the two points differ only by the value of \(c \).
Exercise 8.2 #1, Predicate ii

Given predicate \(f = \overline{abcd} + abcd \), give a test set to satisfy CUTPNFP Coverage

- For each literal \(c \) in each implicant \(i \), \(TR \) contains a UTP for \(i \) and a NFP for \(c \) in \(i \) such that the two points differ only by the value of \(c \)

\[
\begin{align*}
TR &= \{ \overline{FFFF}, TFFF, FFFF, FFTE, FFFT, \\
 &= TTTT, FTTT, TFFT, TTFT, TTTF \}
\end{align*}
\]
Exercise 8.2 #1, Predicate ii

Given predicate $f = \overline{abcd} + abcd$, give a test set to satisfy MNFP Coverage.

For each literal c in each implicant i, TR contains NFPs such that clauses not in i take on true and false.
Exercise 8.2 #1, Predicate ii

Given predicate \(f = \overline{abcd} + abcd \), give a test set to satisfy MNFP Coverage

For each literal \(c \) in each implicant \(i \), \(TR \) contains NFPs such that clauses not in \(i \) take on true and false

\[
TR = \{ \text{TFFF, FTFF, FFFT, FFFT, FTTT, TTTT, TFFT, TTFT, TTTF} \} \]
Exercise 8.2 #1, Predicate ii

Given predicate $f = \overline{abcd} + abcd$, give a test set that is guaranteed to detect all faults.

MUMCUT - given a minimal DNF representation of a predicate f, apply MUTP, CUTPNFP, and MNFP.
Exercise 8.2 #1, Predicate ii

Given predicate \(f = \overline{abcd} + abcd \), give a test set that is guaranteed to detect all faults

MUMCUT - given a minimal DNF representation of a predicate \(f \), apply MUTP, CUTPNFP, and MNFP

\[\text{TR} = \{ FFFF, TTTT, TFFF, FTFF, FFTF, FFFT, FTTT, TFFT, TTFT, TTTF \} \]
END OF EXERCISE
Exercise 8.2 #1, Predicate iii

Given predicate $f = ab + abc + \overline{abc}$

Draw the K-map for f and \bar{f}

Find the non-redundant prime implicant representation for f and \bar{f}

Give a test set to satisfy the following criteria for the simplified f calculated above

- Implicant Coverage (IC)
- MUTP Coverage
- CUTPNFP Coverage
- MNFP Coverage
- MUMCUT Coverage
Exercise 8.2 #1, Predicate iii

Given predicate $f = ab + \overline{abc} + \overline{abc}$

Draw the K-map for f
Exercise 8.2 #1, Predicate iii

Given predicate \(f = ab + \overline{abc} + \overline{abc} \)

Draw the K-map for \(f \)

...and for \(\overline{f} \)
Exercise 8.2 #1, Predicate iii

Given predicate $f = ab + abc + \overline{abc}$

Find the non-redundant prime implicant representation for f.
Exercise 8.2 #1, Predicate iii

Given predicate $f = ab + abc + \overline{abc}$

Find the non-redundant prime implicant representation for f

$f = ab + \overline{bc}$

...and for \overline{f}

$\overline{f} = \overline{ab} + \overline{bc}$
Exercise 8.2 #1, Predicate iii

Given predicates \(f = ab + \overline{bc} \) and \(\overline{f} = \overline{ab} + \overline{bc} \), give a test set to satisfy Implicant Coverage (IC).

For each implicant in \(f \) and \(\overline{f} \), TR contains the requirement that the implicant evaluate to true.

\[
\begin{array}{c|c|c|c|c}
00 & 01 & 11 & 10 \\
\hline
f & - & + & + & + \\
\hline
c & 0 & + & + & + \\
\hline
1 & + & + & + & + \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c}
00 & 01 & 11 & 10 \\
\hline
\overline{f} & + & + & + & + \\
\hline
c & 0 & + & + & + \\
\hline
1 & + & + & + & + \\
\end{array}
\]
Given predicates $f = ab + \overline{bc}$ and $\overline{f} = \overline{ab} + \overline{bc}$, give a test set to satisfy Implicant Coverage (IC).

For each implicant in f and \overline{f}, TR contains the requirement that the implicant evaluate to true.

$$TR = \{ TT^*, *FT, FT^*, *FF \}$$
Exercise 8.2 #1, Predicate iii

Given $f = ab + \overline{bc}$, give a test set to satisfy MUTP Coverage

For each implicant in f, TR contains UTPs such that clauses not in i take on true and false.
Exercise 8.2 #1, Predicate iii

Given \(f = ab + \overline{bc} \), give a test set to satisfy MUTP Coverage

For each implicant in \(f \), \(TR \) contains UTPs such that clauses not in \(i \) take on true and false

\[TR = \{ TTT, TTF, TFT, FFT \} \]
Exercise 8.2 #1, Predicate iii

Given the predicate $f = ab + \overline{bc}$, give a test set to satisfy CUTPNFP Coverage.

For each literal c in each implicant i, TR contains a UTP for i and a NFP for c in i such that the two points differ only by the value of c.
Exercise 8.2 #1, Predicate iii

Given the predicate $f = ab + \overline{bc}$, give a test set to satisfy CUTPNFP Coverage

For each literal c in each implicant i, TR contains a UTP for i and a NFP for c in i such that the two points differ only by the value of c

$$TR = \{ TTF, FTF, TFF, FFT, FTT, FFF \}$$
Exercise 8.2 #1, Predicate \(iii \)

Given the predicate \(f = ab + \overline{bc} \), give a test set to satisfy MNFP Coverage.

For each literal \(c \) in each implicant \(i \), \(TR \) contains NFPs such that clauses not in \(i \) take on true and false.
Exercise 8.2 #1, Predicate iii

Given the predicate $f = ab + \overline{bc}$, give a test set to satisfy MNFP Coverage.

For each literal c in each implicant i, TR contains NFPs such that clauses not in i take on true and false.

$$TR = \{ FTF, FTT, TFF, FFF \}$$

But is infeasible for c.
Exercise 8.2 #1, Predicate iii

Given the predicate \(f = ab + \overline{bc} \), give a test set that is guaranteed to detect all faults

MUMCUT - given a minimal DNF representation of a predicate \(f \), apply MUTP, CUTPNFP, and MNFP
Exercise 8.2 #1, Predicate iii

Given the predicate $f = ab + \overline{bc}$, give a test set that is guaranteed to detect all faults.

MUMCUT - given a minimal DNF representation of a predicate f, apply MUTP, CUTPNFP, and MNFP.

$TR = \{ TTT, TTF, TFT, FFT, FTF, TFF, FTT, FFF \}$

or $\{ TTT, TTF, TFT, FFT, TFF, FTT \}$ using minimal-MUMCUT.
END OF EXERCISE